Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Neurosurg Focus ; 56(4): E9, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560937

RESUMO

OBJECTIVE: This study describes an innovative optic nerve MRI protocol for better delineating optic nerve anatomy from neighboring pathology. METHODS: Twenty-two patients undergoing MRI examination of the optic nerve with the dedicated protocol were identified and included for analysis of imaging, surgical strategy, and outcomes. T2-weighted and fat-suppressed T1-weighted gadolinium-enhanced images were acquired perpendicular and parallel to the long axis of the optic nerve to achieve en face and in-line views along the course of the nerve. RESULTS: Dedicated optic nerve MRI sequences provided enhanced visualization of the nerve, CSF within the nerve sheath, and local pathology. Optic nerve sequences leveraged the "CSF ring" within the optic nerve sheath to create contrast between pathology and normal tissue, highlighting areas of compression. Tumor was readily tracked along the longitudinal axis of the nerve by images obtained parallel to the nerve. The findings augmented treatment planning. CONCLUSIONS: The authors present a dedicated optic nerve MRI protocol that is simple to use and affords improved cross-sectional and longitudinal visualization of the nerve, surrounding CSF, and pathology. This improved visualization enhances radiological evaluation and treatment planning for optic nerve lesions.


Assuntos
Imageamento por Ressonância Magnética , Nervo Óptico , Humanos , Estudos Transversais , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/cirurgia , Imageamento por Ressonância Magnética/métodos
2.
J Neurosurg ; : 1-10, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579358

RESUMO

OBJECTIVE: CT and MRI are synergistic in the information provided for neurosurgical planning. While obtaining both types of images lends unique data from each, doing so adds to cost and exposes patients to additional ionizing radiation after MRI has been performed. Cross-modal synthesis of high-resolution CT images from MRI sequences offers an appealing solution. The authors therefore sought to develop a deep learning conditional generative adversarial network (cGAN) which performs this synthesis. METHODS: Preoperative paired CT and contrast-enhanced MR images were collected for patients with meningioma, pituitary tumor, vestibular schwannoma, and cerebrovascular disease. CT and MR images were denoised, field corrected, and coregistered. MR images were fed to a cGAN that exported a "synthetic" CT scan. The accuracy of synthetic CT images was assessed objectively using the quantitative similarity metrics as well as by clinical features such as sella and internal auditory canal (IAC) dimensions and mastoid/clinoid/sphenoid aeration. RESULTS: A total of 92,981 paired CT/MR images obtained in 80 patients were used for training/testing, and 10,068 paired images from 10 patients were used for external validation. Synthetic CT images reconstructed the bony skull base and convexity with relatively high accuracy. Measurements of the sella and IAC showed a median relative error between synthetic CT scans and ground truth images of 6%, with greater variability in IAC reconstruction compared with the sella. Aerations in the mastoid, clinoid, and sphenoid regions were generally captured, although there was heterogeneity in finer air cell septations. Performance varied based on pathology studied, with the highest limitation observed in evaluating meningiomas with intratumoral calcifications or calvarial invasion. CONCLUSIONS: The generation of high-resolution CT scans from MR images through cGAN offers promise for a wide range of applications in cranial and spinal neurosurgery, especially as an adjunct for preoperative evaluation. Optimizing cGAN performance on specific anatomical regions may increase its clinical viability.

3.
J Imaging Inform Med ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383806

RESUMO

Segmentation of glioma is crucial for quantitative brain tumor assessment, to guide therapeutic research and clinical management, but very time-consuming. Fully automated tools for the segmentation of multi-sequence MRI are needed. We developed and pretrained a deep learning (DL) model using publicly available datasets A (n = 210) and B (n = 369) containing FLAIR, T2WI, and contrast-enhanced (CE)-T1WI. This was then fine-tuned with our institutional dataset (n = 197) containing ADC, T2WI, and CE-T1WI, manually annotated by radiologists, and split into training (n = 100) and testing (n = 97) sets. The Dice similarity coefficient (DSC) was used to compare model outputs and manual labels. A third independent radiologist assessed segmentation quality on a semi-quantitative 5-scale score. Differences in DSC between new and recurrent gliomas, and between uni or multifocal gliomas were analyzed using the Mann-Whitney test. Semi-quantitative analyses were compared using the chi-square test. We found that there was good agreement between segmentations from the fine-tuned DL model and ground truth manual segmentations (median DSC: 0.729, std-dev: 0.134). DSC was higher for newly diagnosed (0.807) than recurrent (0.698) (p < 0.001), and higher for unifocal (0.747) than multi-focal (0.613) cases (p = 0.001). Semi-quantitative scores of DL and manual segmentation were not significantly different (mean: 3.567 vs. 3.639; 93.8% vs. 97.9% scoring ≥ 3, p = 0.107). In conclusion, the proposed transfer learning DL performed similarly to human radiologists in glioma segmentation on both structural and ADC sequences. Further improvement in segmenting challenging postoperative and multifocal glioma cases is needed.

4.
Radiol Artif Intell ; 6(1): e220231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38197800

RESUMO

Purpose To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a study on expert quality perception of brain tumor segmentation. Materials and Methods A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain tumor segmentation cases. Results Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation performance. Notably, only 2.8% of the articles included clinical experts' evaluation of segmentation quality. The experimental results revealed a low interrater agreement (Krippendorff α, 0.34) in experts' segmentation quality perception. Furthermore, the correlations between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts. Conclusion The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and individual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality. Keywords: Brain Tumor Segmentation, Deep Learning Algorithms, Glioblastoma, Cancer, Machine Learning Clinical trial registration nos. NCT00756106 and NCT00662506 Supplemental material is available for this article. © RSNA, 2023.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Algoritmos , Benchmarking , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem
5.
Clin Cancer Res ; 30(7): 1327-1337, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252427

RESUMO

PURPOSE: Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN: We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS: Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS: Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica , Convulsões/genética , Mutação , DNA Helicases/genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
6.
Curr Opin Neurol ; 36(6): 549-556, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37973024

RESUMO

PURPOSE OF REVIEW: To provide an updated overview of artificial intelligence (AI) applications in neuro-oncologic imaging and discuss current barriers to wider clinical adoption. RECENT FINDINGS: A wide variety of AI applications in neuro-oncologic imaging have been developed and researched, spanning tasks from pretreatment brain tumor classification and segmentation, preoperative planning, radiogenomics, prognostication and survival prediction, posttreatment surveillance, and differentiating between pseudoprogression and true disease progression. While earlier studies were largely based on data from a single institution, more recent studies have demonstrated that the performance of these algorithms are also effective on external data from other institutions. Nevertheless, most of these algorithms have yet to see widespread clinical adoption, given the lack of prospective studies demonstrating their efficacy and the logistical difficulties involved in clinical implementation. SUMMARY: While there has been significant progress in AI and neuro-oncologic imaging, clinical utility remains to be demonstrated. The next wave of progress in this area will be driven by prospective studies measuring outcomes relevant to clinical practice and go beyond retrospective studies which primarily aim to demonstrate high performance.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Neuroimagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia
7.
Lancet Oncol ; 24(11): e438-e450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922934

RESUMO

Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Estudos Prospectivos , Bancos de Espécimes Biológicos , Recidiva Local de Neoplasia/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia
8.
Magn Reson Med ; 90(5): 1789-1801, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37335831

RESUMO

PURPOSE: We hypothesized that the time-dependent diffusivity at short diffusion times, as measured by oscillating gradient spin echo (OGSE) diffusion MRI, can characterize tissue microstructures in glioma patients. THEORY AND METHODS: Five adult patients with known diffuse glioma, including two pre-surgical and three with new enhancing lesions after treatment for high-grade glioma, were scanned in an ultra-high-performance gradient 3.0T MRI system. OGSE diffusion MRI at 30-100 Hz and pulsed gradient spin echo diffusion imaging (approximated as 0 Hz) were obtained. The ADC and trace-diffusion-weighted image at each acquired frequency were calculated, that is, ADC (f) and TraceDWI (f). RESULTS: In pre-surgical patients, biopsy-confirmed solid enhancing tumor in a high-grade glioblastoma showed higher ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lower TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ (f)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , compared to that at same OGSE frequency in a low-grade astrocytoma. In post-treatment patients, the enhancing lesions of two patients who were diagnosed with tumor progression contained more voxels with high ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and low TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\left(\mathrm{f}\right)}{\mathrm{TraceDWI}\left(0\ \mathrm{Hz}\right)} $$ , compared to the enhancing lesions of a patient who was diagnosed with treatment effect. Non-enhancing T2 signal abnormality lesions in both the pre-surgical high-grade glioblastoma and post-treatment tumor progressions showed regions with high ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and low TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ \left(\mathrm{f}\right)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , consistent with infiltrative tumor. The solid tumor of the glioblastoma, the enhancing lesions of post-treatment tumor progressions, and the suspected infiltrative tumors showed high diffusion time-dependency from 30 to 100 Hz, consistent with high intra-tumoral volume fraction (cellular density). CONCLUSION: Different characteristics of OGSE-based time-dependent diffusivity can reveal heterogenous tissue microstructures that indicate cellular density in glioma patients.


Assuntos
Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Difusão
9.
Neurooncol Pract ; 10(3): 215-216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188161
10.
Neurosurg Clin N Am ; 34(3): 335-345, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210124

RESUMO

Noninvasive imaging methods are used to accurately diagnose meningiomas and track their growth and location. These techniques, including computed tomography, MRI, and nuclear medicine, are also being used to gather more information about the biology of the tumors and potentially predict their grade and impact on prognosis. In this article, we will discuss the current and developing uses of these imaging techniques including additional analysis using radiomics in the diagnosis and treatment of meningiomas, including treatment planning and prediction of tumor behavior.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagem , Neoplasias Meníngeas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X
11.
J Clin Oncol ; 41(17): 3160-3171, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37027809

RESUMO

PURPOSE: The Response Assessment in Neuro-Oncology (RANO) criteria are widely used in high-grade glioma clinical trials. We compared the RANO criteria with updated modifications (modified RANO [mRANO] and immunotherapy RANO [iRANO] criteria) in patients with newly diagnosed glioblastoma (nGBM) and recurrent GBM (rGBM) to evaluate the performance of each set of criteria and inform the development of the planned RANO 2.0 update. MATERIALS AND METHODS: Evaluation of tumor measurements and fluid-attenuated inversion recovery (FLAIR) sequences were performed by blinded readers to determine disease progression using RANO, mRANO, iRANO, and other response assessment criteria. Spearman's correlations between progression-free survival (PFS) and overall survival (OS) were calculated. RESULTS: Five hundred twenty-six nGBM and 580 rGBM cases were included. Spearman's correlations were similar between RANO and mRANO (0.69 [95% CI, 0.62 to 0.75] v 0.67 [95% CI, 0.60 to 0.73]) in nGBM and rGBM (0.48 [95% CI, 0.40 to 0.55] v 0.50 [95% CI, 0.42 to 0.57]). In nGBM, requirement of a confirmation scan within 12 weeks of completion of radiotherapy to determine progression was associated with improved correlations. Use of the postradiation magnetic resonance imaging (MRI) as baseline scan was associated with improved correlation compared with use of the pre-radiation MRI (0.67 [95% CI, 0.60 to 0.73] v 0.53 [95% CI, 0.42 to 0.62]). Evaluation of FLAIR sequences did not improve the correlation. Among patients who received immunotherapy, Spearman's correlations were similar among RANO, mRANO, and iRANO. CONCLUSION: RANO and mRANO demonstrated similar correlations between PFS and OS. Confirmation scans were only beneficial in nGBM within 12 weeks of completion of radiotherapy, and there was a trend in favor of the use of postradiation MRI as the baseline scan in nGBM. Evaluation of FLAIR can be omitted. The iRANO criteria did not add significant benefit in patients who received immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Imunoterapia
12.
Neuro Oncol ; 25(6): 1166-1176, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36723606

RESUMO

BACKGROUND: Quantitative imaging analysis through radiomics is a powerful technology to non-invasively assess molecular correlates and guide clinical decision-making. There has been growing interest in image-based phenotyping for meningiomas given the complexities in management. METHODS: We systematically reviewed meningioma radiomics analyses published in PubMed, Embase, and Web of Science until December 20, 2021. We compiled performance data and assessed publication quality using the radiomics quality score (RQS). RESULTS: A total of 170 publications were grouped into 5 categories of radiomics applications to meningiomas: Tumor detection and segmentation (21%), classification across neurologic diseases (54%), grading (14%), feature correlation (3%), and prognostication (8%). A majority focused on technical model development (73%) versus clinical applications (27%), with increasing adoption of deep learning. Studies utilized either private institutional (50%) or public (49%) datasets, with only 68% using a validation dataset. For detection and segmentation, radiomic models had a mean accuracy of 93.1 ± 8.1% and a dice coefficient of 88.8 ± 7.9%. Meningioma classification had a mean accuracy of 95.2 ± 4.0%. Tumor grading had a mean area-under-the-curve (AUC) of 0.85 ± 0.08. Correlation with meningioma biological features had a mean AUC of 0.89 ± 0.07. Prognostication of the clinical course had a mean AUC of 0.83 ± 0.08. While clinical studies had a higher mean RQS compared to technical studies, quality was low overall with a mean RQS of 6.7 ± 5.9 (possible range -8 to 36). CONCLUSIONS: There has been global growth in meningioma radiomics, driven by data accessibility and novel computational methodology. Translatability toward complex tasks such as prognostication requires studies that improve quality, develop comprehensive patient datasets, and engage in prospective trials.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagem , Meningioma/patologia , Estudos Prospectivos , Gradação de Tumores , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia
13.
Proc Natl Acad Sci U S A ; 120(6): e2219199120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724255

RESUMO

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/patologia , Losartan/farmacologia , Losartan/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos T CD8-Positivos , Edema , Microambiente Tumoral
14.
J Magn Reson Imaging ; 58(3): 850-861, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36692205

RESUMO

BACKGROUND: Determination of H3 K27M mutation in diffuse midline glioma (DMG) is key for prognostic assessment and stratifying patient subgroups for clinical trials. MRI can noninvasively depict morphological and metabolic characteristics of H3 K27M mutant DMG. PURPOSE: This study aimed to develop a deep learning (DL) approach to noninvasively predict H3 K27M mutation in DMG using T2-weighted images. STUDY TYPE: Retrospective and prospective. POPULATION: For diffuse midline brain gliomas, 341 patients from Center-1 (27 ± 19 years, 184 males), 42 patients from Center-2 (33 ± 19 years, 27 males) and 35 patients (37 ± 18 years, 24 males). For diffuse spinal cord gliomas, 133 patients from Center-1 (30 ± 15 years, 80 males). FIELD STRENGTH/SEQUENCE: 5T and 3T, T2-weighted turbo spin echo imaging. ASSESSMENT: Conventional radiological features were independently reviewed by two neuroradiologists. H3 K27M status was determined by histopathological examination. The Dice coefficient was used to evaluate segmentation performance. Classification performance was evaluated using accuracy, sensitivity, specificity, and area under the curve. STATISTICAL TESTS: Pearson's Chi-squared test, Fisher's exact test, two-sample Student's t-test and Mann-Whitney U test. A two-sided P value <0.05 was considered statistically significant. RESULTS: In the testing cohort, Dice coefficients of tumor segmentation using DL were 0.87 for diffuse midline brain and 0.81 for spinal cord gliomas. In the internal prospective testing dataset, the predictive accuracies, sensitivities, and specificities of H3 K27M mutation status were 92.1%, 98.2%, 82.9% in diffuse midline brain gliomas and 85.4%, 88.9%, 82.6% in spinal cord gliomas. Furthermore, this study showed that the performance generalizes to external institutions, with predictive accuracies of 85.7%-90.5%, sensitivities of 90.9%-96.0%, and specificities of 82.4%-83.3%. DATA CONCLUSION: In this study, an automatic DL framework was developed and validated for accurately predicting H3 K27M mutation using T2-weighted images, which could contribute to the noninvasive determination of H3 K27M status for clinical decision-making. EVIDENCE LEVEL: 2 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Neoplasias da Medula Espinal , Masculino , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Estudos Retrospectivos , Estudos Prospectivos , Mutação , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/genética
16.
Eur Radiol ; 33(5): 3693-3703, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36719493

RESUMO

OBJECTIVES: Accurate pre-treatment imaging determination of extranodal extension (ENE) could facilitate the selection of appropriate initial therapy for HPV-positive oropharyngeal squamous cell carcinoma (HPV + OPSCC). Small studies have associated 7 CT features with ENE with varied results and agreement. This article seeks to determine the replicable diagnostic performance of these CT features for ENE. METHODS: Five expert academic head/neck neuroradiologists from 5 institutions evaluate a single academic cancer center cohort of 75 consecutive HPV + OPSCC patients. In a web-based virtual laboratory for imaging research and education, the experts performed training on 7 published CT features associated with ENE and then independently identified the "single most (if any) suspicious" lymph node and presence/absence of each of the features. Inter-rater agreement was assessed using percentage agreement, Gwet's AC1, and Fleiss' kappa. Sensitivity, specificity, and positive and negative predictive values were calculated for each CT feature based on histologic ENE. RESULTS: All 5 raters identified the same node in 52 cases (69%). In 15 cases (20%), at least one rater selected a node and at least one rater did not. In 8 cases (11%), all raters selected a node, but at least one rater selected a different node. Percentage agreement and Gwet's AC1 coefficients were > 0.80 for lesion identification, matted/conglomerated nodes, and central necrosis. Fleiss' kappa was always < 0.6. CT sensitivity for histologically confirmed ENE ranged 0.18-0.94, specificity 0.41-0.88, PPV 0.26-0.36, and NPV 0.78-0.96. CONCLUSIONS: Previously described CT features appear to have poor reproducibility among expert head/neck neuroradiologists and poor predictive value for histologic ENE. KEY POINTS: • Previously described CT imaging features appear to have poor reproducibility among expert head and neck subspecialized neuroradiologists as well as poor predictive value for histologic ENE. • Although it may still be appropriate to comment on the presence or absence of these CT features in imaging reports, the evidence indicates that caution is warranted when incorporating these features into clinical decision-making regarding the likelihood of ENE.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/patologia , Extensão Extranodal , Infecções por Papillomavirus/complicações , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Linfonodos/patologia , Neoplasias de Cabeça e Pescoço/patologia , Estudos Retrospectivos , Estadiamento de Neoplasias
17.
Neuro Oncol ; 25(3): 533-543, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35917833

RESUMO

BACKGROUND: To assess whether artificial intelligence (AI)-based decision support allows more reproducible and standardized assessment of treatment response on MRI in neuro-oncology as compared to manual 2-dimensional measurements of tumor burden using the Response Assessment in Neuro-Oncology (RANO) criteria. METHODS: A series of 30 patients (15 lower-grade gliomas, 15 glioblastoma) with availability of consecutive MRI scans was selected. The time to progression (TTP) on MRI was separately evaluated for each patient by 15 investigators over two rounds. In the first round the TTP was evaluated based on the RANO criteria, whereas in the second round the TTP was evaluated by incorporating additional information from AI-enhanced MRI sequences depicting the longitudinal changes in tumor volumes. The agreement of the TTP measurements between investigators was evaluated using concordance correlation coefficients (CCC) with confidence intervals (CI) and P-values obtained using bootstrap resampling. RESULTS: The CCC of TTP-measurements between investigators was 0.77 (95% CI = 0.69,0.88) with RANO alone and increased to 0.91 (95% CI = 0.82,0.95) with AI-based decision support (P = .005). This effect was significantly greater (P = .008) for patients with lower-grade gliomas (CCC = 0.70 [95% CI = 0.56,0.85] without vs. 0.90 [95% CI = 0.76,0.95] with AI-based decision support) as compared to glioblastoma (CCC = 0.83 [95% CI = 0.75,0.92] without vs. 0.86 [95% CI = 0.78,0.93] with AI-based decision support). Investigators with less years of experience judged the AI-based decision as more helpful (P = .02). CONCLUSIONS: AI-based decision support has the potential to yield more reproducible and standardized assessment of treatment response in neuro-oncology as compared to manual 2-dimensional measurements of tumor burden, particularly in patients with lower-grade gliomas. A fully-functional version of this AI-based processing pipeline is provided as open-source (https://github.com/NeuroAI-HD/HD-GLIO-XNAT).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Inteligência Artificial , Reprodutibilidade dos Testes , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia
18.
Neuro Oncol ; 25(1): 4-25, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36239925

RESUMO

Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Consenso , Mutação , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
19.
Nat Commun ; 13(1): 7346, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470898

RESUMO

Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.


Assuntos
Big Data , Glioblastoma , Humanos , Aprendizado de Máquina , Doenças Raras , Disseminação de Informação
20.
PLoS One ; 17(9): e0274795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36136975

RESUMO

OBJECTIVE: There is a paucity of large cohort-based evidence regarding the need and added value of diffusion-weighted imaging (DWI) in patients attending outpatient clinic for cognitive impairment. We aimed to evaluate the diagnostic yield of DWI in patients attending outpatient clinic for cognitive impairment. MATERIALS AND METHODS: This retrospective, observational, single-institution study included 3,298 consecutive patients (mean age ± SD, 71 years ± 10; 1,976 women) attending outpatient clinic for cognitive impairment with clinical dementia rating ≥ 0.5 who underwent brain MRI with DWI from January 2010 to February 2020. Diagnostic yield was defined as the proportion of patients in whom DWI supported the diagnosis that underlies cognitive impairment among all patients. Subgroup analyses were performed by age group and sex, and the Chi-square test was performed to compare the diagnostic yields between groups. RESULTS: The overall diagnostic yield of DWI in patients with cognitive impairment was 3.2% (106/3,298; 95% CI, 2.6-3.9%). The diagnostic yield was 2.5% (83/3,298) for acute or subacute infarct, which included recent small subcortical infarct for which the diagnostic yield was 1.6% (54/3,298). The diagnostic yield was 0.33% (11/3,298) for Creutzfeldt-Jakob disease (CJD), 0.15% (5/3,298) for transient global amnesia (TGA), 0.12% (4/3,298) for encephalitis and 0.09% (3/3,298) for lymphoma. There was a trend towards a higher diagnostic yield in the older age group with age ≥ 70 years old (3.6% vs 2.6%, P = .12). There was an incremental increase in the diagnostic yield from the age group 60-69 years (2.6%; 20/773) to 90-99 years (8.0%; 2/25). CONCLUSION: Despite its low overall diagnostic yield, DWI supported the diagnosis of acute or subacute infarct, CJD, TGA, encephalitis and lymphoma that underlie cognitive impairment, and there was a trend towards a higher diagnostic yield in the older age group.


Assuntos
Amnésia Global Transitória , Disfunção Cognitiva , Síndrome de Creutzfeldt-Jakob , Encefalite , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Encefalite/patologia , Feminino , Humanos , Infarto/patologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA